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THE ANALYSIS of radiation transfer problems in absorbing 
and emitting media is complicated by the fact that the 
radiative properties are dependent on wavelength. The 
first approximation of a physical problem is obtained 
by treating the radiating matter as gray and introducing 
an appropriate mean absorption coefficient. This, of 
course, is a mathematical idealization of the physical 
situation. However, the gray case is of particular interest 
since it provides a physically significant standard of 
comparison for interpreting the more general case and 
simplifies considerably a difficult problem. Therefore, 
the situation in which the spectral absorption coefficient 
KX* is supposed to be independent of the wavelength by 
replacing it with a mean absorption coefficient integrated 
over the entire spectrum is worthy of careful analysis. 

There is a lack of agreement among the astrophysicists 
[l] on the most appropriate definition for the mean 
absorption coefficient. They attempt to define, for ex- 
ample, the mean in such a manner that the condition of 
radiative equilibrium, i.e. constant radiant energy flux, is 
maintained in a stellar atmosphere. The definitions that 
result from this approach may be highly successful 
when applied to the study of radiation transfer in the 
atmospheres of stars and planets; however, they are not 
meaningful in the more general engineering problem 
when energy transport by conduction and/or convection 
is also present. Investigators who have been concerned 
with radiation transfer problems in systems of engineering 
nature, where surfaces are of necessity present, have used 
either the Rosseland [2, 31 or the Planck mean absorption 
coefficients [3, 41. 

For radiation in strongly absorbing media when the 
radiant energy flux can be approximated by a simple 
diffusion equation, the Rosseland mean absorption 
coefficient should be used. However, whenever the 
radiation transfer problem is formulated in terms of the 
integral equations the use of Plan&s mean absorption 
coefficient might not be appropriate in some instances. 
In this note we discuss a more logical basis for defining 
the mean absorption coefficient, which should be valid 
for problems of engineering nature, that is, in situations 
in which energy transport is by radiation alone or when 
radiation interacts with other modes of energy transport. 

* The subscript X refers to a particular wavelength. 

Consider a homogeneous medium which is capable of 
emitting and absorbing thermal radiation of wavelength 
X. Assume that the medium is in local thermodynamic 
equilibrium and that the index of refraction is nx. The 
temperature may vary from point to point in the medium, 
but each point may be characterized by a definite tem- 
perature T, so that the matter at each point is behaving 
as if in local thermodynamic equilibrium. If 1~ is the 
spectral intensity of radiation in a given direction s 
then the conservation equation of a monochromatic 
pencil of radiation, or the equation of transfer, can be 
expressed ast 

(s ’ v) I,, = KA n,+’ Ib, X - Kh IA, (1) 

where Ib, x is the black body intensity of radiation in vucuo 
given by Planck’s function. The first term on the riaht- 
hand side of equation (1) accounts for emission and-the 
second for absorption of radiation. Integration of 
equation (1) over all solid angles (Q = 4n) yields the 
conservation equation of monochromatic radiant energy: 

v .2Fh = 47r KX ?rX2 IO, ,j - Kh ??A, (2) 

where the radiant energy flux vector #A is defined as 

(3) 

and the radiant energy incident on the boundary of an 
element of volume of radiating media from all directions 
is denoted by 

%=o~4 I,dQ. (4) 
n 

The absorption coefficient KX is related to the commonly 
employed mass absorption coefficient ~1’ by the relation 

KX = PKXf, (5) 

where p is the density of radiating media. 
The physical meaning of the right-hand side of equation 

(2) can be clarified when we note that the term 4 = nx2 Ib. x 

is the product of the spectral radiant energy density of a 
black body at the local molecular temperature times the 

f Reference 1, pp 6-17. 
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local velocity of light c. While $!?A is related to the local 
radiant energy density of space WA* by cg~ 2: c ux. 

If the co-ordinate s is laid off along the direction s, the 
directional derivative (s V) 1~ becomes dIA/ds, and the 
formal solution of equation (1) can readily be written as 

I,+(s) = IA(O) exp [- i KA(S’) ds’] -:- 
0 

d 1zh2(s’) K,J (s’) h, A (s’) exp [ - f K,&“) ds”] ds’. (6) 
S 

In writing (6) it was assumed that the intensity of radiation 
leaving the surface of the system at s = 0 is given by 
Ii(s) = IA(O). It should be noted that if the surfaces of the 
system are real the spectral distribution I,+(O) leaving the 
surface will not correspond to black body radiation. 

Integration of the conservation equation of mono- 
chromatic radiant energy (2) over the entire spectrum 
yields 

0 0 0 

Defining the total (integrated over all wavelengths) 
radiant energy flux vector as 

fl= T.?&dX 
0 

(8) 

and introducing the “mean emission coefficient”,t 
corresponding to the emission or radiation, ce, as 

ie = o-___ _ = .~ ‘0 

$ fl,j' Ib, A dh $ IIA’ Et,, A d A 

? 
KX nh= Eb, h d h 

= ~. 
112 .& (9) 

as well as the “mean absorption coefficient” correspond- 
ing to absorption of radiation, ka, as 

(10) 

equation (7) can be written as 

V * s = 417~ n2 Eb - Ra 9. (11) 

* Reference 1, p. 13. 
t The definition of the emission coefficient jh as 

employed by the astrophysicists is different from that 
used here. They define a spectra1 emission coefficient 
as jh = KA nXP Ib, A. 

Since the first term on the right-hand side of (7) 
represents the radiant energy emitted from an element 
of volume per unit time in all directions, the weight 
function m,j2 lb, A (=n,j2 &, ,j) should be used in defining 
the mean emission coefficient I?+ This is correct physically 
because the amount of radiant energy emitted by the 
radiating matter should depend on the local conditions 
only. Note that for the case when the index of refraction 
of radiating matter is unity, Z, reduces to the definition 
of Planck’s mean absorption [I]. The second term on the 
right-hand side of (7) represents the amount of radiant 
energy absorbed by the matter. The mean absorption 
coefficient I&, therefore, depends not only on the physical 
nature and temperature of the radiating medium but also 
on the spectral distribution of the incident radiation, 
9~. The spectral characteristics of ‘9~ will depend not 
only on the spectral characteristics of the radiating 
media but also on those of the surfaces [see equation (6)]. 
Therefore the spectral distribution of nha &, h will not 
be the same as that of <g,+, and in general & I’ K,,. If 
and only if KA is independent of X or if IQ? Et,, .\ -- :qx 
will & = I&. 

It should be noted that a parallel distinction between 
emission and absorption of radiation is made in a more 
familiar case of radiant heat transfer from surfaces [5]. 
The definition of the total emissivity and the total 
absorptivity are similar to those of the mean emission and 
the mean absorption coefficients, respectively. 

For completeness sake, we indicate here the definition 
of the Rosseland mean absorption coefficient [6], 

0 0 

where T is the absolute temperature. At distances far 
(optically) away from the boundaries and a system close 
to equilibrium such that the temperature and the radiative 
properties do not change much within one photon mean 
free path, the radiant energy flux vector can be approxi- 
mated by a simple diffusion type equation, 

(13) 

The term 4n2 Eb is the product of the total radiant 
energy density at the local temperature and the velocity 
of light. 

For geometrically complex systems Hottel [7] has 
proposed to calculate the absorption coefficients from 
real-gas emissivity and absorptivity data in series form 
representative of a sum of a small number of “gray” 
gases. The mixed gray-gas concept allows for correct 
use of the mean absorption coefficient and is useful for 
zonal-type analysis of radiant heat transfer. The total 
absorptivity of a gas, however, depends not only on the 
temperatures of the gas and the enclosing surfaces but 
also on the mean beam length, i.e. the shape of the ex- 
perimental apparatus. Thus the local variation of the 
mean absorption coefficient cannot be determined with 
confidence from this type of data in situations where 
large temperature gradients are expected to occur. 
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Unfortunately, & cannot be calculated unless the 
temperature distribution is known, so that Eb, x can be 
predicted at any point in the medium. The index of 
refraction no is generally a weak function of wavelength 
and can as a first approximation be assumed to be 
constant. The value of & cannot be calculated unless the 
nature of the incident radiation 3~ is clearly specified. 
Usually, both Eb, x and 9~ are not known rigorously 
until the whole problem has been solved; however, in 
many problems reasonable first approximations can be 
found for these quantities. Both I?~ and & can then be 
corrected as more accurate information on &, ,j and 
9~ becomes available. 

The arbitrariness associated with the definition of a 
mean absorption coefficient has been eliminated by 
introducing a “mean emission coefficient” & and a 
“mean absorption coefficient” &. The physical meanings 
of I& and & are clear. It is believed that the distinction 
between % and & gives a more logical and physically 
realistic basis for their use in the integrated (over all 
wavelengths) equation for conservation of radiant 
energy and in the calculation of radiant heat transfer. 
However, a word of caution should be interjected here. 
The radiating media is likely to be optically thin for 
some important spectral regions and optically thick for 

others. Thus, in order to obtain accurate results, it will 
probably be necessary to devise different approximation 
schemes for the different spectral regions for the calcu- 
lation of the radiant heat flux. 
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